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S T A T I O N A R Y  S T A T E S  O F  A B I N A R Y  F L U I D I Z E D  B E D  

Yu. A. Buevich and Sh. K. Kapbasov UDC 532.546.6 

Steady-state vertical flows and fluidized beds of a polydisperse material are considered based on the 

hypothesis on the collisional mechanism of energy and momentum exchange between particles. Repre- 

sentations are obtained for the effective energy of particle pulsations and the partial pressures, produced by 

the latter, in a binary fluidized bed. A stationary particle distribution with respect to the height of the bed is 

investigated. 

The majority of available physicomathematical models and design methods pertain to monodisperse flows 

and fluidized beds [1 ]. In some cases such models and methods are also successfully used to describe real 

polydisperse mixtures of particles. However there are situations in which polydispersity is of importance or even 

of primary importance, whereas the indicated methods turn out to be insufficient. This especially refers to the 

process of gravitational separation of ores and other lump- or powder-like materials [2], processing of disperse 

systems in fluidized beds with inert particles (drying [3 ], annealing [4 ], and so on), to low-temperature combustion 

of sprayed solid or liquid fuel [5, 6 ], to pneumo- and hydrotransport of polydisperse materials [7 ], etc. 

The behavior of polydisperse flows and fluidized beds differs in many respects from that of analogous 

monodisperse systems. This is particularly pronounced in the case of segregation of different fractions of a disperse 

material along the height of the fluidized bed, whose nonstandard character has been noted in [8, 9 ]. Those effects 

as well as mutual motion of the fractions in polydisperse flows exert a crucial influence on the effectiveness of 

seperation processes as well as on the structure of beds and flows itself and therefore they have been intensely 

studied experimentally under laboratory and industrial conditions (see the examples in [10-19]). However, the 

theoretical models of the effects and processes discussed are based on a number of purely empirical assumptions 

and do not favor either clearer understanding of the phenomena observed in transport and fluidization of 

polydisperse materials or development of reliable design methods. 

In the present work polydisperse systems are modeled by generalizing the theory of monodisperse gas 

suspensions recently set forth in [20, 21 ]. The general results are illustrated by the example of a fluidized bed 

having coarse particles only of two species that differ in their size and density. 

Background of the Model. We will consider a mixture of spherical particles distributed with respect to 

their radius a. The material density of the particles dl is a function of their size in the general case. We assume 

the density n(a) of the size distribution of the number of particles to be normalized to the total numerical 

concentration n. 
The particles are drawn into random pseudoturbulent motion, whose characteristics depend on the 

mechanism of energy and momentum exchange between the particles. If the latter are not too small, this exchange 

is primarily accomplished via direct particle-particle collisions. In this case, the pseudoturbulence in a monodisperse 

system must be isotropic according to the principle of equidistribution of energy with respect to translational 

degrees of freedom of particle pulsations. Here the rotational energy of the particles may be neglected [20, 21 ]. 

In a polydisperse system, from this principle the equality of the average kinetic energies per degree of 

freedom for particles of different size and density is inferred. Therefore if we introduce, in the usual way, a 

"temperature" 0 of pulsations as the doubled average energy of one degree of freedom, this temperature must be 

the same for particles of different types, i.e., 
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m ( a ) ( w  ' ~ ( a ) )  = ( m )  ( w  ' 2 ) = 3 0 ,  

where w' is some random vector-function, while average mass of the particles is 

( m>= l.~im(a) n(a)da, m(a)=o(a)dl(a), o(a)= 
n , 

(I) 

4~ a s" (2) 
3 

Next, we pass from analyzing the random velocities w'(a) of particles of different types to investigation of 

the random unit vector w' . Based on Eq. (1), it is natural to assume that 

w' (a) = ( ( m ) Im (a)) l/2 w'. (3) 

Considering the particles to be sufficiently coarse, we use the result from [22 ] to describe the force of their 

hydrodynamic interaction with the carrier-gas flow. Then the total force acting on a single particle of given radius 

with an account of its weight and the buoyancy effect may be written in the following form: 

f(a)--m(a){ a •  [ l ( a )  • P (dl----~) ] } d l ( a )  g ' 

(4) 
K(9)- 3; / 1--9 )2, •  dl(a) ~ - - l - - p ,  

8 1 - -  1,1792/3 do 

where the average density of the solid phase is introduced analogously to Eq. (2): 

< m > 1 1 ( d~ ) ( o ) ~ a (a)n (a)da ( --  - - ,  . . . .  0 (a) da. (5) 
( o )  n ~ n J 

If the particles differ not only in their size but in density as well, quantity (5) may fluctuate. However for 

the sake of simplicity, we will consider it to be a deterministic local characteristic of the disperse medium, not 

subjected to fluctuations, because the variations in <dl > can be related only to large-scale fluctuations, whereas 

the fluctuations responsible for pseudoturbulence initiation pertain to individual particles [20, 21 ]. 

We note that the gas slip velocity u(a) relative to different particles is not the same. This statement, trivial 

for pulsations, is also valid in some cases for average motion (e.g., under pneumotransport conditions or in the 

stationary fluidized beds with continuous charging and discharging of a dispersed material). 

The effect of pulsations on the average force of interphase interaction in the system turns out to be rather 

weak [21 ]. Therefore to a first approximation it may be neglected. Then Eq. (4) will also describe the indicated 

force if by u(a) and p (as well as e) are meant the corresponding average quantities. The pulsation of the force 

with an accuracy to quantities of first order in the fluctuations is 

" (a) = m (a) { l~a• (a) [ K (p) u (a) (v; - w' (a)) + 

+ K (9)[uo ( v ' - - w '  (a))] u (a) + ~ u (a) u (a)9'1 - -  (6) 
ap J 

[ ] - -  ( d 1 ) 1 gp'},  u 0 - -  - -  
d 1 (a i N (a) U (a) 

Here variables without primes are understood as average quantities. For the sake of simplicity, it is assumed that 

the direction u(a) does not depend on a. In gas-fluidized systems, to(a) >> 1, so thai the second term in brackets 

at g may be ignored. 

In what follows, in order to determine 0 and other quantities, we must consider stochastic equations for 
random pulsations, as has been done in [21 ] for monodisperse systems. Closing the solution of such equations 

requires the variance <p '2>  of the volume concentration fluctuations of a polydisperse system. The latter may be 

found, as in [20], using the statistical theory of thermodynamic fluctuations [23]. As a result, if the initial 

polydisperse mixture of particles is broken down into a finite number of fractions with the characteristic dimensions 
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al,  a2 . . . . .  then expressions may be obtained for a < p ' (ai)p ' (aj)>-type correlation in terms of second-order 

derivatives of any thermodynamic potential of the particle system using whole numbers of particles of different 

types. Then it is easy to determine <p,2> by conventional methods. If necessary, we may pass, in the limit, to 

systems with continuous size distribution by increasing without bound the number of fractions. 

However, even for a binary disperse system (having only two fractions) concrete calculations are too 

cumbersome. At the same time in the general case < p,2> does not differ much from its counterpart  for a 

monodisperse system. Therefore it would be reasonable to use the latter quantity as an appropriate approximation. 

If we employ, as in [21 ], the Carnahan-Starling model [24] of a system of identical spheres, then we have [25] 

( p ' z )  = p2 [1 q_2p 

Within the framework of the same approximation 

( o '~- (a) > = P (a____L_) ( p,2 > = p [ 
P k 

4 - - p  ].-I. 

(t - -  p)~ 
(7) 

4 - - p  1 -~ 1 + 2p (1 - -  p)~ p (a). (8) 

In states near the close-packing one, the formula for < p ,2>,  following from the Enskog theory of dense 

gases of identical spherical particles [25 ], may give better results. However in those states the error due to use of 

a fictitious monodisperse system instead of a real polydisperse one must increase. For definiteness we use Eqs. (7) 

and (8) below within the entire range of the total volume concentration p. 

Stochastic Equations. The I_angevin equation for a particle of given radius in the coordinate system, 

associated with its average motion, and with the assumption of relative smallness of its velocity fluctuations may 

be written in the form [21 ] 

m (a) (Ow' (a)/Ot) = f' (a) + L. (a), (9) 

where fc(a) is the force acting on a chosen particle in collisions with other particles. [t may be represented as a 

sum of short pulses of random amplitude randomly distributed along the time axis. In [21 ], using, instead of Eq. 

(9), an equation similar in form was proposed, averaged over the ensemble of physically permissible realizations 

of the random environment of the chosen particle, having a random velocity w'(a). But even under  this condition 

the indicated force must be a result of collisions with particles of all other sizes in a polydisperse system, i.e., must 

be expressed in terms of some functional of w'(a). As a consequence, the equation obtained from (9) will be 

integrodifferential. 
To overcome this difficulty, we sum Eq. (9) over all particles with weight n(a), assuming at the same time 

that averaging over the indicated ensemble has been done, i.e., that Eq. (9) contains the a l ready smoothed 

collisional force. For simplicity, we shall consider here only situations in which the average gas flow velocity is the 

same for all particles, which allows us, in writing Eq. (9), to use the same coordinate system for particles of different 

size. Then from Eq. (9) with account for Eqs. (3), (5), and (6) we obtain 

"h (Ow'/Ot) = f ' /  ( m ) + f J  ( m ) ,  (10) 

where 

f ' / (  m > = F [V.,.v' - -  ~'3w' § ~'~ (UoV') u - -  ~'3 (UoW') u] + 

+ [72 (dF/dp) uu - -  g] p', F = K/a~215 ~ 

(11) 

whereas for the collisional force per unit mass, with use of the same considerations as in [21 ], it may be assumed 

that 

f J  ( m ) = - -  Aw' - -  B (uow') up. (12) 

Here the coefficients 
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rrtl l2 (a) n (a) da, 
n ( m ) 1/2 J 

a~215176 f re(a) - -  n ( a ) d a ,  (13) 
IZ ( a74 

aO•O tnl/2 
V3 = ?--m~ 1,2~ (a) l~(a)da, 

n a•  (a) 

and the characteristic values a ~ and ~o are introduced. In a monodisperse system, it is natural to assume that the 

latter are equal to the real particle radius and the phase density ratio, so that all 7j become unity in this case. The 

coefficients A and B in Eq. (12) should be defined from the isotropy conditions of pseudoturbulent pulsations of 

the particles and the equality of the work of all collisional forces in the system of the total dissipation of energy in 

collisions, as has been done in [21 ]. 

Equations (10) must be supplemented with the equations 

(O]Ot + uv) p' = eVV', 0 = - -  VP' - -  hi', (14) 

following from the laws of mass and momentum conservation for the gas. Here the force of interphase interaction 

per unit volume of the mixture appears, which is determined, in fact, in Eq. (11); use is made of the previous 

coordinate system associated with the average motion of the disperse phase. 

As in [21 ], we employ the correlation theory of stationary random processes, according to which the 

pulsations are represented in the form of stochastic Fourier-Stieltjes integrals over frequencies and wave space, 

containing the corresponding random measures. Then system of equations (10), (14) is transformed to a system 

of linear algebraic equations for the random measures. It is easy though rather tedious to solve the latter. In 

particular, for the random measures of the longitudinal (with respect to u) and one of the transverse components 

of the pulsation velocity w' we have 

dZ~.l - -  

dZw2 = klk2 
k2 

k ~ [x + (1 - -  t 2) Yl ~' + (2 - -  t 2) x (x + 9) 

(x + y) Mu 
dZo, 

Ix + (1 - -  t2)l v + (2 - -  t,) x (x + y) 

dZ o, 

t* = k21/le*, 

(15) 

where the first coordinate axis is chosen along u, while dZp is the random measure of the concentration fluctuations. 

Furthermore, the following notation is introduced: 

A B Y3 
x - -  - - ,  y =  , ~ ,=  , 

2y~Fu 2"~2Fu y~ 

M =  1 _ _ + _ _ 1  ( __dF u2 + g ) ,  g = - - g U o .  
e 2?2Fu ~ ?~ d9 

(16) 

The random measures may be used to express the spectral densities of different quantities in terms of the 

spectral density of the concentration fluctuations which after integration over frequencies and wave space give the 
corresponding average values. Using the same representation for the spectral density of the total-concentration 

fluctuations as in [21 ], we have from Eq. (15) 

-[2(Mu) ~ 1 t~dt 
< w ~  > = x < ~ > .[ ( b - - t~ )  ~ ' 

VY + x (x + Y) . o 

�9 , [ x + y  ]~(Mu)" i ( Wz ) = ( p'2 ) 1 /~ (1 ~ t 2)  dt 
"fy + x (x + y) " ~  g ( b -  l~) ~ 
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b = ( 2 x +  V)(x-q- y) (17) 
VY + x (x + y) 

where <p,2> is def ined in Eq. (7), while 7 and M are given in Eq. (16). For a monodisperse  system 

(72 = 73 = 1), these relations naturally convert those obtained in [21 ]. 

Now we neglect the energy dissipation of the system due to collisions between the particles. Then the 

average work of the collisional forces must vanish and, as a consequence, we arrive at the previous result: y = -3x 

[21 1. The isotropy condition is easily written on the basis of formulas (17), thus allowing determination of x. 

Finally we have 

I / b =  1,598, x = - - 5 , 1 2 2 7 ,  y = 15,3667 (18) 

and furthermore 

= 2 ) -~- C(M/Y) 2t.t2 ( P '2 ) , C -~- 1,17.10 --a. (19) 

It is pertinent to note that these results are obtained using the same assumption on the relative smallness 

of the frequency of pulsations as for the analogous results in [21 ]. 

Temperature of Pulsations and Partial Pressures of the Particles. We now write the basic relations char- 

acterizing the effect of random pulsations of particles on the averaged state of the mixture under consideration. 

The temperature of pulsations introduced in Eq. (i) is expressed on the basis of Eq. (19) as 

O= ( m )  ( w ;  2 ) =  1,17.10 -3(M/y)  ~ ( 9  '2 )  ( m ) u  ~. (20) 

The partial pressure of the particles with sizes ranging from a to a + da is represented in the form 

1 + p + p 3 - p ~  (21) Pl (a) da = 6 (p) On (a) da, G (p) = 
(1 - -  pp  

where G(p) is the correction function appearing in the equation of state of solid spheres in conformity with the 

model of [24 ]. 
The equation describing the macroscopic distribution of the particles in the situation considered is written, 

with account for Eqs. (4) and (21), in the following form: 

- - v ( G O o ( a ) ) + m ( a ) [  a• (P-------~) uu -q- ( 1 - p ( a )  (dl-------~) ) g]  p (a) = 0 " d l  (a) (22) 

In essence, this equation defines the distribution density p(a)  as a function of coordinates ,  i.e., it is 

integrodifferential because G and 0 depend on p obtained by integrating p (a) over the entire range of particle radii. 

Next, we consider a binary system consisting of particles with radii al and a2, densities dy and d2, and 

volume concentrations Pl and P2 in the mixture;/91 +/92 =p. Introducing the parameters 

=a2/al, ~ = d d d l ;  a ~  •176215  (23) 

we obtain from Eqs. (5) and (13) 

old1 n t- P2d~ Pl + ~--lp2 
( d l ) =  , Y~= , 

P Pl + [~P2 
Pl + ~ -1/2p2 (24) 

(Pl + c~-ap~)l/2 (pt + ~P~)~/~ " 

These expressions completely define M and 7 in conformity with Eq. (16) and, consequently, the temperature in 

Eq. (20). The partial pressures of particles of two kinds are as follows in this case: pj = G0(pj/crj), j -- 1, 2. 
Of interest is the effect of incorporating particles, differing in their properties from the initial particles, into 

the system on the rate of pseudoturbulent pulsations, with the total volume concentration of the dispersed phase 
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Fig. 1. D imens ion less  t e m p e r a t u r e  of pulsat ions  versus  concen t ra t ion  on 
incorporating fine (a; a = 2 -t/3, fl = 1 ) and lighter particles (b; a = 1, fl = 0.75 ); 
the figures at the curves i n d i c a t e p 2 / p i  values fo rp l  +P2 =P. 

being preserved. This information is illustrated in Fig. 1. As a reference state, a homogeneous state of the fluidized 

bed of the particles of the first kind is used, in which the average gas velocity in the spaces between the particles 

is 

u = Uo = ( ea l •  1/~. (25) 

The temperature  in this homogeneous state is described by the curves with the v a l u e s p 2 / P l  = 0 in Fig. l; 

these curves coincide, naturally, with those in Fig. 2 from [21 ]. The  other curves in Fig. 1 pertain to the states in 

which there are smaller (Fig. la) or lighter (Fig. lb) particles in different concentration whereas the gas velocity 

and the total  concen t r a t i on  of the d isperse  phase  remain  the same (but such s ta tes  are  not,  of course, 

macroscopically homogeneous).  Obviously, addition of smaller particles virtually does not affect the pulsation rate 

within the low concentration range but leads to a very pronounced attenuation of pulsations in concentrated systems; 

the more pronounced, the higher the concentration is. The  addition of lighter particles exerts the same effect at 

high concentrations. But at low concentrations, on the contrary,  it favors some intensification of pulsations. 

In the case of a binary system, Eq. (22) leads to two coupled equations in which p~ and P2 are unknown 

variables. Bearing in mind that the fluidized bed is stationary and directing the z axis downward, we may represent 

these equations (j = 1, 2) as 

dz (pjG0) q-m~ u 2 -  1 - -  g P i = 0 .  (26) 
a j• i d j  , 

The functions K(p) and G(p) are defined, respectively, in Eqs. (4) and (21), while 0(p) is calculated from Eq. (20) 

with account for Eqs. (7), (13), (16), and (24). 

Part icle Distribution along the Height of a Binary Bed. We will consider a s ta t ionary fluidized bed 

containing particles of two kinds; the partic!es of both kinds are, in the mean, motionless. The state of the bed is 

fully defined by the prescribed total flow rate Q = eu = const of a fluidizing gas per unit area of a gas-distribution 

grid. We may show (see below) that the bed has a distinct upper boundary at which the quantities Pl and P2 

simultaneously vanish. Choosing the reference point at this boundary,  we introduce the dimensionless coordinate 

and the parameter  

Zt Z Q2 = - - ,  q - - - - ,  C :  1,17-10 -z .  (27) 
Cal• alXlg 

In this notation Eq. (26) may be written as 
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Fig. 2. Particle distribution with respect to the height of a binary bed (I, 
a = 2-1/3,/3 = 1 ; II, a = i,/~ = 0.75) for q = 0.1 (a) and q = 1 (b) ; the figures at the 
curves indicate log c values. 

d ( G ( p  '~)  p ) = [  l - - ( P l + ~ p ~ )  K ] 
dz' Pt e~ q e2 Pl, 

d ( G<p '2 ) p) =a3[ ~(pl+~p2) K ]p2, 
dz' P~ e 2 q ae ------~ 

(28) 

p= Pl+~z- lP~  2 1 d l n K  + 

p1+a-5 /2~- l /2pz  + 2 dp 2Kq pl + o~-'p2 

A homogeneous fluidized state of particles of the j-th kind is possible if for the given Q the equation 

e -- (29) 
aj• 

is solved for p in the interval 0 < p < p . ,  where p .  = 0.60 is the concentration of the close-packing state. For 

homogeneous states of the fluidized binary mixture to exist, the system of equations 

r [[~__ ( p l +  ~p~)] = 1 _ (pt + [3p~) = K ( p _ _ _ _ . ~ ) ( ~ ) 2  (30) 
alxlg 

must have solutions satisfying the conditions Pl > 0, P2 > 0, /9 </o. .  As is seen, it has no such solutions for 

a < 1, f l <  1 a n d f o r a  > 1, fl > 1. 

Now we consider asymptotic forms of solutions of (28) in the vicinity of the point z', where Pl << P2 << 1. 
After simple manipulations we arrive at equations approximately valid in the region considered: 
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Fig. 3. Contents of fractions (a) and composition (b) of a binary bed with 
a = 2-1/3, fl = 1 (I) and with a = 1, fl = 0.75 (II) for q = 0.1 versus dimensionless 
height h'; the figures at the curves indicate log c values; the solid and dashed 
curves in Fig. 3a pertain to V1 and V2, respectively. 

1,64 ( 1 ) 3~ 
d (o~p~/3)~ . - - - - K o  p~, K o = K ( O ) =  , 

dz' a3~ q 8 

d r 7/a x ( I  Ko] 
dz '  re2 s ~  1,64 - -  P2. 

(31) 

At small z', the solution of these equations is 

P2 ~ [0,94 ( 1 
q 

7 
p,  ,~, c ( z ' ) ' ,  s - - -  4~z3~ 

Ko ]3/4 
~i  ~ (z ' )3 /4 ,  

1/q - -  Ko 

1/q - -  Ko /a~  
l, 

(32) 

where the constant c can be arbitrary. At small z', the condition Pl < P2 is fulfilled provided 

Z _ _ K o ~ 3 ~  ( 1 K o ) .  (33) 
q q a[~ 

This inequality implies that it is easier to fluidize particles of the second kind than those of the first kind. 
If the inequality is not fulfilled, we change the numbering of the fractions. 

The asymptotic forms of Eqs. (32) make it possible to prescribe the initial data for numerical integration 
Eqs. (28). Distributions pj(z') obtained for different c for particles differing only in size are given for two values 
of q in Fig. 2 (I). Figure 3 (I) gives the corresponding curves for the integrals 
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h t 

Vj-=.[ pj(z')dz', ]=1,  2, 
0 

(34) 

characterizing the total volume concentration of both fractions in a fluidized bed of dimensionless height h' and 

these for their ratio describing the fractional composition of the bed for one of the values of q. 

If for a prescribed q a mixture with a given composition and a known content of either of the two fractions 

is fluidized, the parameters c and h' should be determined from the curves in Fig. 3 (I). Furthermore, curves of 

the type of those in Fig. 2 (I) are employed to determine the distributions of the fractions along the height of the 

bed. Analogous information for particles differing only in their density is presented in Figs. 2 (II) and 3 (II). 

A sufficiently high binary fluidized bed at comparable contents of particles of both fractions breaks down 

into several zones. In the lower and upper parts of the bed regions are formed in which almost monodisperse systems 

are, in fact, fluidized, with their particles being fluidized, respectively, more difficulty or easily. These regions, 

practically not differing from monodisperse fluidized beds, are separated by a mixing zone that has particles of 

both kinds. The thickness of this zone may attain, as seen in Fig. 2 (I, III), several tens of units of change in the 

dimensionless coordinate z'. Since for gas-fluidized beds Cx - 1, then according to Eq. (27) it amounts to several 

tens of diameters of the particles. In this case, the indicated thickness decreases markedly with increasing gas flow 

rate, which is fully consistent with the experimental inferences about enhanced separation of the particles as the 

fluidization number increases. (This inference is by no means trivial since with increase in this number one might 

expect intensification of mixing processes and, as a consequence, thickening of the mixing zone.) 

For reasons of space we cannot offer a more complete analysis of the distributions of different particles 

along the height of both the binary and the polyfractiona] fluidized beds, following, correspondingly, from Eqs. 

(28) and their analogs obtained from Eq. (22). However, it is reasonably safe to suggest that the results of such 

analysis are in good qualitative agreement with practically all the experimental data in [10-19 ]. 

In conclusion, it may be noted that the theory of this work is restricted by the implicit assumption that the 

structure of the bed is close to a homogeneous one. This means that we have completely ignored mixing due to 

particle transfer by rising bubbles as well as to circulating flows in the bed, whose effect may be considerable (see, 

e.g., [13 ]). 

N O T A T I O N  

A, B, coefficients in Eq. (12); a, particle radius; b, parameter in (17); C, c, coefficients in Eqs. (19) and 

(32), respectively; d, density; F, function introduced in (11); f, force acting on a particle; G, function introduced 

in Eq. (21); g, acceleration due to gravity; h', dimensionless height of the bed; K, function defined in Eq. (4); k, 

wave vector; M, function introduced in Eq. (16); m, particle mass; n, numerical concentration of the particles; P, 

function defined in Eq. (28); p, pressure; Q, gas flow rate; q, parameter introduced in Eq. (27); s, exponent in Eq. 

(32); u, gas velocity; ~, resistance coefficient, ~ 1/2; V, integral in (34); w', pulsation velocity of the particles; x, 

y, parameters introduced in Eq. (16); z, z', dimensional and dimensionless vertical coordinates; a,/3, ratios of radii 

and densities of the particles; 7j and 7, parameters defined in Eqs. (13) and (16), respectively; e, porosity; u ~ 

free-fall velocity of the particles; 0, temperature of pulsations (doubled mean energy per degree of freedom); x, 

particle-to-gas density ratio; p, volume concentration of the particles; a, particle volume. 
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